-Поиск по дневнику

Поиск сообщений в Dagich

 -Подписка по e-mail

 

 -Статистика

Статистика LiveInternet.ru: показано количество хитов и посетителей
Создан: 28.02.2003
Записей: 2398
Комментариев: 21120
Написано: 23172


Основной парадокс состояния сна и его экспериментальное разрешение

Вторник, 06 Мая 2014 г. 12:10 + в цитатник

Основной парадокс состояния сна и его экспериментальное разрешение

Иван Пигарёв
Иван Пигарёв

Стенограмма и видеозапись публичной лекции доктора биологических наук, главного научного сотрудника Лаборатории передачи информации в сенсорных системах ИППИ РАН Ивана Пигарёва. Лекция состоялась 27 февраля 2014 года в рамках цикла «Публичные лекции «Полит.ру» при поддержке фонда «Династия» и ИППИ РАН. 





Текст лекции

Я, прежде всего, хочу поблагодарить за приглашение выступить с лекцией, потому что я очень люблю это дело, особенно, когда у меня в душе есть некоторая уверенность, что те знания, которые я вам сегодня сообщу, могут быть очень полезны для вашего здоровья. Но я должен сразу огорчить, наверное, очень многих, кто пришел на эту лекцию, что как раз о снах в смысле как о сновидениях, ради чего, наверное, большая часть слушателей здесь собралась, я как раз говорить ничего и не буду. Потому что состояние сна и сновидения это вещи совершенно разные, и если первое, действительно, чрезвычайно интересно, то второе, с моей точки зрения, ничего интересного не представляет. Откуда они берутся, я вам расскажу и, надеюсь, что покажу, в чем тут фокус, и почему это, на самом деле, ничего интересного собой не представляет.

Теперь будем переходить потихоньку ко сну. В чем я вижу сложность? Я представляю, что, наверное, в этой аудитории собираются люди самых разных специальностей, и не знающие, наверное, ни физиологии, ни медицины, и поэтому могут возникнуть, я так думаю, ситуации, когда я вдруг произнесу какое-нибудь слово, и будет непонятно, что это такое. Вот я прошу или уважаемого ведущего, я-то вообще готов предложить это делать любому, спрашивать «что это значит», и меня прерывать в любом месте для того, чтобы максимально понятно было то, о чем я буду говорить.

Я буду стараться максимально избегать того, чтобы я говорил что-нибудь, что будет непонятно. И поэтому давайте подведем некоторое основание, некоторую базу. Что такое состояние сна? Оно, с одной стороны, замечательно тем, что все знают, что это такое, и более или менее каждый здоровый человек один раз, а то и два раза в сутки, в этом состоянии находится. Таким образом, прошло уже сколько лет от сотворения мира, и каждый день каждый человек впадает в это состояние.

Это состояние, прежде всего, характеризуется тем, что почему-то у нас ухудшается получение сигналов из внешнего мира. Вы знаете, что глубоко спящий человек не слышит звуков, и если он сильно хочет спать, то даже очень сильные звуки его не будят. Люди не воспринимают зрительные сигналы, поступающие в глаз. Спящие, во-первых, закрывают глаза, чтобы отсечь вход зрительных сигналов из окружающего мира в мозг. Но, кроме этого, создан дополнительный механизм у нас в мозге, который во время сна блокирует проведение оставшихся импульсов, идущих от глаза в мозг человека.

Также очень сильно повышаются пороги восприятия сигналов, например, тактильных, и нужно очень сильно потрясти человека для того, чтобы он проснулся. Это всем хорошо известно. И вот такая картина приводила к представлению, что мозг спящего существа, спящего организма, находится в такой ситуации, которую научно или очень наукообразно называли сенсорной депривацией, то есть ситуацией, когда никакие сигналы из внешнего мира не поступают в мозг, и мозг является изолированным от внешнего мира.

Все всегда задумывались, а что это за такое удивительное состояние? До первой половины XX века объяснение было простое: сон – это, скорее всего, просто отдых мозга. Поработаем сильно физически, вроде мышцам надо отдохнуть, мозг поработал сильно в течение дня, и мозгу надо отдохнуть. Ну и было все хорошо и понятно, никто особенно и не задумывался над этой проблемой. Понятная вещь, – периодически мозгу надо отдохнуть, надо поспать.

И только в 1930-е годы двадцатого века была разработана техника, позволяющая регистрировать суммарную электрическую активность больших участков мозга или от его поверхности, или от поверхности головы, а также электрические сигналы, генерируемые отдельными нейронами мозга. С применением этой техники было сделано совершенно удивительное наблюдение, которое опровергло все ожидания и представления.

Оказалось, что мозг во время сна не только не отдыхает, а наоборот, все его нейроны работают, как правило, даже более интенсивно, чем во время бодрствования. И вот тут возникла эта самая первая и удивительная загадка сна. Эта загадка сна для многих ученых существует и до настоящего времени. Если вы приедете на современный конгресс по изучению сна, то с большой вероятностью встретите девиз "Mystery of sleep" или что-нибудь похожее на это, потому что в мире исследователей сна общепризнанно, что назначение сна остается одной из величайших тайн и загадок природы.

Оно, конечно, может быть и так. Но на самом деле, ученые, занимающиеся сном, говоря такую вещь, несколько лукавят, потому что очень хорошо известно и очень давно, зачем нам нужен сон. Мы к этому со временем перейдем. Я покажу только, чтобы было повеселее, картинку, показывающую, как выглядит эта всем известная электроэнцефалограмма (ЭЭГ), то есть сигнал, регистрируемый от поверхности мозга, и как он меняется при переходе от бодрствования ко сну.

Как такую картинку получают? Прямо на поверхность мозга через маленькие дырочки, которые сверлятся в черепе (поскольку я физиолог, я работаю с животными), я ставлю электроды. О технике эксперимента я расскажу чуть позже. Электроды ставятся прямо на поверхность коры мозга, и оттуда регистрируется замечательная электрическая активность. И вот уже Ганс Бергер, который в свое время открыл, что можно регистрировать электрическую активность от поверхности мозга (ЭЭГ), обнаружил такую интересную вещь: по мере того, как начинает развиваться сон, низкоамплитудная и высокочастотная электрическая активность мозга начинает меняться и появляются низкочастотные и высокоамплитудные волны так называемого медленного сна.

Верхняя запись на этом рисунке очень сжатая, на этой записи помещается пять минут. В начале животное находится в состоянии бодрствования, а со временем развивается сон. Если мы возьмем кусочек этой записи, и начнем его растягивать до двух минут, одной минуты или до десяти секунд, то вы увидите знаменитые медленные волны сна, которые дали название фазе медленно-волнового или медленного сна, как я его потом буду называть. Эти волны замечательно регистрируются у мышей, крыс, кошек, обезьян, людей, и выглядят более или менее одинаково. В какого зверя вы не поместите электроды, будет довольно похожая картина.

Картина ЭЭГ дает возможность узнать, когда у нас животное находится в состоянии бодрствования, а когда засыпает. Надо сказать, что такое яркое различие состояния бодрствования и состояния сна по ЭЭГ, было еще одним сильным аргументом в пользу того, что в состоянии сна и в состоянии бодрствования мозг находится в принципиально разных ситуациях. Полагали что задачи, которые мозг решает в бодрости и во сне, принципиально отличаются, потому что даже электрическая картина становится такой удивительно различной.

Но насколько этот вывод был обоснован, можно было усомниться. Как картинка, которую я вам здесь показываю, получается? Человеку накладывают электрод, он спит на удобном мягком матрасе, в комнате свет выключен, тихо, у испытуемого развивается полноценный активный сон. Потом он пробуждается, но продолжает лежать все в той же кровати, в окружении бедной зрительной обстановки, ничего не двигается, серое тусклое освещение, приглушенный звук, потому что камера обычно бывает звуконепроницаемой, тихой, чтобы никто ему не мешал спать. Таким образом, человек оказывается в ситуации чрезвычайно пассивного бодрствования.

Вот мы и подумали, что изменения в картине ЭЭГ при пробуждении могли быть потому, что у нас сначала было состояние активного сна, а потом оно сменилось состоянием исключительно пассивного бодрствования.

Можно было предположить, что если животное или человека поместить в естественную среду, наполнить его зрительный и слуховой мир сигналами, поступающими через разные органы чувств, и заставить его двигаться, чтобы его мышцы тоже работали, и еще, чтобы все эти сигналы начали поступать к нему ритмично, с такой же ритмикой, с какой у него идут медленные волны в состоянии сна, то, может быть, ЭЭГ в бодрости у нас станет такой же волнообразной, как во сне.

Известные различия картины ЭЭГ в бодрствовании и во сне, возможно, были связаны не с тем, что мозг находится в двух принципиально разных ситуациях, а  с тем, что просто сигналы, поступающие в кору мозга в состоянии бодрствования и состоянии сна, очень разные. А если мы в состоянии бодрости подадим в мозг такой же поток сигналов, как и во сне, то мы получим такую же картину. И это, действительно, оказалось так. Тут я вам покажу интересную картинку. Это ЭЭГ кролика.

На верхней записи вначале кролик спит, а потом он проснулся, и амплитуда волн упала. А тут он опять заснул, и волны появились вновь. А вот на нижней записи кролик все время находится в состоянии чрезвычайно активного бодрствования. И на фоне этого активного бодрствования мы подаем зрительную стимуляцию неяркими вспышками света на глаз в ритме обычной сонной активности. И вы видите, что никто здесь не сможет различить, чем эта картина отличается от представленной на верхней записи. Действительно, ЭЭГ, если мы создадим определенный поток сигналов, идущих в мозг, примет ту форму, которую имеют входящие сигналы.

Таким образом, можно было усомниться, что состояния мозга во сне и в бодрости чем-то принципиально отличаются. Скорее можно было предположить, что оно ничем принципиально не отличается, кроме как потоком входных сигналов.

Это хорошо. Это был важный шаг, но теперь нам надо было подумать, а что это мог быть за источник таких синхронных периодических сигналов, которые поступают в кору мозга у млекопитающих и птиц во время сна. Что у них такого общего в состоянии сна. И вот на этом вопросе я на время оставлю область электрофизиологии и перейду к описанию обещанных экспериментов, которые показали, и довольно давно, а, собственно, зачем же существует сон?

Как можно было поставить эти эксперименты? Для этого не нужно было иметь никакой ЭЭГ, никаких энцефалографов и усилителей. Можно было сделать очень простой опыт. Надо было лишить животное сна на протяжении какого-то срока и посмотреть, что с ним станет. Что может быть проще этого? Мы сразу узнаем, зачем нам нужен сон.

Первый такой эксперимент был поставлен Марией Манасеиной, в России, еще в конце XIX века. Она не давала спать щенкам, и описала, что через несколько дней такой процедуры, которая называется процедурой депривации сна, все щенки погибали. В то время эта работа не вызвала абсолютно никакого резонанса. Эту работу недавно нашел Владимир Матвеевич Ковальзон – наш патриарх исследования сна. Благодаря ему мы теперь знаем, что, первые такие эксперименты были сделаны так давно.

Надо сказать, что на этом дело не кончилось. В 1930-е годы в Ленинграде в Институте физиологии, в лаборатории академика К.М. Быкова снова были проведены подобные эксперименты. Они тоже не знали про Манасеину, естественно. Но это уже был совершенно другой уровень физиологии, физиологических знаний. Они не давали спать уже взрослым собакам. Было использовано шесть собак, и большое число опытных экспериментаторов с медицинским образованием, сменяя друг друга, постоянно наблюдали за этими собаками, не давали им спать, используя так называемые методы мягкой депривации сна. То есть с собаками играли, гуляли, не давали им никак заснуть, но не применяли при этом никаких неприятных или болевых стимуляций.

Они уже регистрировали многие, так называемые, висцеральные параметры, это пульс, кровяное давление, температуру тела, кожно-гальваническую реакцию, у них уже был довольно большой арсенал измеряемых параметров. И как опытные врачи, когда они понимали, что еще один час, и собака погибнет, они эксперимент прекращали и давали собаке заснуть.

Собаки выдерживали это пять - шесть суток, после6 чего наступал момент, когда становилось очевидно, что собака погибает. Тогда собаке давали заснуть, она спала обычно часов десять - двенадцать непрерывно, потом вскакивала и была абсолютно здоровая, бодрая и веселая собака. И опять никто не обратил внимания на эти работы, благополучно про них забыли. И опять, совершенно случайно, мы с женой, готовя очередной обзор по проблемам депривации сна в старых журналах того года нашли эту публикацию.

Первая работа, которая была сделана и обратила на себя внимание, была сделана в Америке в лаборатории Аллана Рехтшаффена (Allan Rechtschaffen) на крысах. У него была придумана исключительно остроумная конструкция, действительно, которая снимала очень много возражений. Как правило, к экспериментам с лишением сна бывают придирки, что тут проблема не в том, что вы лишаете животное сна, а то, что вы создаете ситуацию стресса. И что это все последствия стресса, а не депривации сна. Рехтшаффен сумел обойти это возражение, я не буду сейчас вам рассказывать, как это было сделано. Это довольно частный момент, но на крысах в исключительно аккуратных условиях эксперимента он провел ту же самую работу. Поскольку крысы это не собаки, это животное недорогое, он доводил этот эксперимент до конца, когда крыса действительно погибала. Как это делалось?

Он регистрировал ЭЭГ у крыс, которые постоянно жили на диске над водой. Компьютер следил за ЭЭГ. Когда в ЭЭГ появлялись признаки засыпания, диск начинали вращаться. Если крыса пробуждалась и ЭЭГ превращалась в ЭЭГ бодрствования, то вращение прекращали. Если крыса не просыпалась, то вращение продолжалось, и крыса вскоре съезжала в воду. Она из воды вылезала опять на диск, поскольку крысы очень не любят купаться, но потом долго не могла заснуть. Это был абсолютно автоматический эксперимент. Все под компьютерным контролем.

И вот, наступал очень интересный момент. Крыса была жива, вдруг у нее становилась плоская ЭЭГ, все волны исчезали, и это был уже момент невозврата. Если тут остановить эксперимент, и дать крысе заснуть, она не отходила. Она все равно безвозвратно погибала. Рехтшаффен имел большую лабораторию, это были уже 1990-е годы, а не 30-е. И они, естественно, этих погибших крыс потом начинали вскрывать и выяснять, в чем дело и что произошло. А что произошло? По описанию, примерно через сутки лишения сна, животные начинали есть большое количество пищи, но с большой скоростью теряли вес. На коже появлялись язвы, вылезал мех. Когда делали вскрытие, оказывалось, что весь желудочно-кишечный тракт как одна сплошная язва, там язвы желудка, язвы кишечника.

Более тщательные исследования последних лет показали, что все это, скорее всего, было результатом отключения иммунной системы, которая тоже, вдобавок ко всему, при этом выходила из строя. Но что было самое удивительное и для экспериментаторов, и для всех тех, кто читал эти работы, что был у крысы единственный орган, который практически не страдал от депривации сна. Это был мозг! Если все до этого думали, что сон - это, прежде всего, состояние, нужное для поддержания работы мозга, то эти эксперименты показали, что это, скорее всего, не так. Что мозг ухитряется сохранить свою работоспособность и целостность, независимо ни от каких состояний. Животное погибает, но мозг при этом еще сохраняется целым.

Ну и вот теперь давайте попробуем свести воедино те две истории, которые я вам сегодня рассказал. Первое, возникла гипотеза, что, во-первых, кора мозга и во сне, и в бодрствовании, возможно, занимается одними и теми же операциями. То есть кора мозга - это не специализированный компьютер, как мы сейчас хотели бы сказать, а это есть некоторый универсальный компьютер, который делает некие операции с входной информацией, независимо от того, что туда идет. Она, может быть, и не знает, что за сорт информации туда подается. Она делает с ней какую-то операцию, и тому, кто ей отправил задачу,  выдает ответ. А кто же посылает задачу во сне?

Тут, собственно, и будет самое интересное. Характер ЭЭГ, которые мы пишем, вот эти волны, которые мы регистрируем, только отражают характер входных сигналов, идущих в кору. Если они ритмичные, если они синхронизированные, то мы видим волны, если они не ритмичные и несинхронизированные, не видим волны. И тогда у нас возникает вопрос: вот мы знаем результаты экспериментов по депривации сна, животные погибли не из-за того, что у них плохой мозг, а явно от каких-то существенных висцеральных расстройств.

Слово «висцеральный» – связанный с нашими потрохами. Viscera (лат.) – внутренности, все, что у нас в животе лежит, желудок, кишечник. Слово «висцеральный», которое я буду употреблять в будущем, включает все, что определяет жизнеспособность нашего тела. Не мыслительную нашу функцию, а именно сохранение нашего тела как некий живой организм. И вот тут возникла у нас простая, даже я бы сказал, примитивная и естественная идея.

Что происходит? Мозг наш как некий универсальный компьютер во время бодрствования обеспечивает нашу жизнь во внешней среде. Он получает сигналы из внешнего мира чрез глаза, уши, тело, тактильную рецепцию и т.д., для того, чтобы обеспечить наше активное поведение в окружающей среде. Но у нас есть другой мир, у нас есть внутренний мир, мир наших внутренних органов, который тоже безумно сложный, но в отличие от внешнего мира, мир наших внутренних органов не представлен в наших ощущениях. Это вопрос уже не ко мне, а скорее к конструктору нашего тела, но так было сделано, что наши внутренние органы не представлены в наших ощущениях.

Мы не чувствуем наших кишок, наших почек. Любого человека спросите, что у него внутри, он ничего вам не скажет, пока не прочтет книжку по анатомии. Но этот мир есть, он безумно сложен. Когда физиологи его изучают, становится понятно, насколько он сложен.

Чтобы не быть совсем уж голословным, я приведу такой простой пример: все мы хорошо знаем, насколько важно для нас зрение. Так вот зрительную информацию мы получаем через рецепторы, расположенные в сетчатке глаза – палочки и колбочки. Это все знают еще из школьных курсов анатомии. В глазах человека их порядка полутора миллионов. Сигналы от палочек и колбочек передаются в мозг для анализа. В результате этого анализа мы видим. Мы можем оценивать расстояния, узнавать лица и организовывать наше обычное, нормальное, зрительное поведение.

Так вот, оказалось, что только в стенках желудочно-кишечного тракта расположено столько же рецепторов, сколько в обоих сетчатках наших глаз. Эти рецепторы передают сигналы о температуре, химическом составе перевариваемой пищи, о механических изменениях там, и, видимо, о многом-многом другом, о чем мы даже догадываться не можем, потому что это не дано нам в ощущениях. Зрением мы можем посмотреть, тактильно мы можем пощупать, а что идет оттуда, мы не знаем. В мире нашего сознания не представлен наш висцеральный мир. Но поток информации, идущий оттуда, огромен, он соизмерим с потоком зрительным.

И мы предложили очень простую гипотезу. Сон – это то время, когда наш мозг переключается на анализ сигналов, приходящих от внутренних органов. Если там столько сенсоров, то не зря же они там расположены. Если они там есть, значит, они работают. Любая биологическая система устроена так: кто не работает, того нужно съесть. И если какая-то клеточка почему-то не работает, ее тут же съедают специальные другие клеточки, которые на это и сделаны, чтобы никаких бездельников в этом сообществе биологического тела не оставалось. А они все не съедены, значит, они действительно, реально работают. Если они работают, значит, эту информацию должен кто-то анализировать.

Оказалась к этому времени удивительная картина: во всей нашей огромной коре мозга нет представительства внутренних органов, они там не представлены. Совершенно нелепая картина!  Как можно себе такое представить? И тогда, замечательно, все сходится одно с другим. Кора мозга у нас в бодрствовании занимается сигналами из внешнего мира, во время сна занимается сигналами из нашего внутреннего мира, от наших внутренних органов. Вот, вроде, получается гипотеза, которая позволяет все объяснить, связать одно с другим.

Надо сказать, что гипотеза, эта была довольно фантастической. Никто из физиологов представить себе такое и поверить в это не  мог. Когда мы с этой гипотезой выступили, это не укладывалось ни в какие рамки классической физиологии того времени, Все считали, что кора мозга это специализированные зоны – зрительная, слуховая, соматосенсорная. У всех в сознании кора представлялась как процессор специализированный. Обычная реакция была: «Да что вы мне рассказываете! Зрительная кора сделана для того, чтобы анализировать, ориентацию линий, глубину, цвет и т.д., а вы со своими кишками какими-то, кому вообще нужны эти кишки?»

Прелесть этой гипотезы была в том, что она допускала довольно простую экспериментальную проверку. И как раз этой экспериментальной проверкой мы и занялись.  Мы и сами понимали, что выглядит-то все довольно красиво, но неправдоподобно. А проверку, оказалось, сделать довольно просто.

Я не объяснил, что это за красивая кошечка здесь сидит на слайде. Это наша основная экспериментальная парадигма. Животные у нас всегда абсолютно нормальные, живые, здоровые, целые. Я подчеркиваю еще, что я абсолютно не допускаю такой процедуры с домашними животными как кастрация. Я считаю, что если хозяин готов пойти на такое, он должен сначала сделать это с собой, а потом уже со своей кошечкой. Поэтому все кошки, которые у меня работают, это всегда некастрированные, нормальные кошки.

Вторая моя задача, чтобы, конечно, ей никогда не было больно, чтобы все было для нее комфортно. Кошки у меня живут по много лет, и, когда они кончают эту серию экспериментов, то с них все снимается, зашивается, и они уезжают ко мне на дачу. И там они доживают свою жизнь. Но это случается не часто, потому что кошки работают очень подолгу, и они любят лабораторию. У моих кошек есть клетка, но это их дом родной, а когда я прихожу, то открываю клетку. Кошка ходит, где пожелает.  Обычно она спит у меня на столе перед компьютером.

Что тут сделано? На голове кошки установлена рамка, поставленная на ее череп. В черепе нет болевой чувствительности. Череп – это кость, в которой нет никаких чувствительных сенсоров. Поэтому на череп можно поставить рамку, которая позволяет зажать голову в станок, и при этом кошка ничего не чувствует. Кроме того, ей не нужно поддерживать голову мышцами шеи. Она быстро понимает прелесть этого положения, и соображает, что это лучшее место для сна, потому что не надо напрягать шею. Сел, тебе застегнули голову и все, можно расслабиться и спать. Все кошки в таких условиях быстро начинают прекрасно спать.

Метод был у нас первоначально разработан для экспериментов по зрению, которым мы в то время занимались. Мы регистрировали активность нейронов зрительной коры. Зрительная кора была прекрасна тем, что она была наиболее изученной зоной коры мозга, и всем всегда было прекрасно известно, что все нейроны в зрительной коре в состоянии бодрствования, естественно, реагируют на зрительную стимуляцию, и только на зрительную. И это самая-самая что ни на есть специализированная зона мозга, которая вот такая стопроцентно зрительная. И мы решили, что нашу идею надо проверять, прежде всего, на зрительной коре. Если окажется, что тут нейроны во время сна начинают реагировать не на зрение, а на кишки, это будет довольно убедительная картинка.

Мы в период бодрствования регистрировали активность нейронов. Это уже не суммарная ЭЭГ. Тут используется тонкий микро-электрод. Кончик у него один-два микрона, он погружается внутрь коры мозга, подходит близко к одиночной нервной клетке в мозге, и регистрирует его электрические импульсы.

Нервные клетки, как они устроены, что это за штука? Я не буду, конечно, рассказывать детали. Нервные клетки общаются друг с другом с помощью электрических импульсов, практически как наши компьютеры. У них есть вход, у них есть выход. На вход к ним поступают сигналы от других, соседних нейронов, выход у нейрона обычно один. Выходное волокно может идти в самых разных направлениях до какого-то другого нейрона, в другую часть мозга или в другой части тела.

Эти волокна могут быть очень длинные. Везде и всюду по ним идут просто электрические импульсы. Вы ставите рядом электрод, и вы можете регистрировать эти электрические импульсы. Так вы можете решить, в какой ситуации этот нейрон активируется, то есть, за что он отвечает, и в чем его смысл жизни. Если нейрон начинает реагировать на вашу стимуляцию, значит, нейрон в данный момент анализирует приходящие сигналы, которые вы ему даете.

Верхняя картинка здесь, это такая запись. А вот где красная стрелочка, я в это время перед мордой кошки вожу рукой. Вы видите, нейроны зрительной коры очень бурно реагируют на это дело. Тут они молчали, а тут они все вспыхнули, их довольно много, разных, но все они вспыхнули и дружно ответили, что они действительно видят мою руку. Это самое примитивное дело, конечно, в настоящих экспериментах мы водим не руку, задачи посложнее даются. Но самое простое увидеть, что он зрительный, это вот так подвигать рукой перед мордой.

Когда мы получили такой зрительный ответ, мы оставили электрод в этом же самом месте, и дали кошке заснуть. И вот когда кошка заснула, мы током простимулировали кишечник. Предварительно кошке были имплантированы электроды в стенку кишечника, и когда кошка спала, на кишечник был дан импульс тока. Такой слабенький, что он ее не разбудил. А потом оказалось даже, что когда начинаешь ей стимулировать кишечник, она начинает спать еще глубже, что вообще говоря, исходя из этой теории, можно было ожидать. Так вот, мы в момент, отмеченный красной полоской, простимулировали ей кишечник. И вы видите, что ответ нейронов в зрительной коре оказался даже еще мощнее, чем на зрительную стимуляцию.

Вот эта картинка уже более наукообразная. В сущности, то же самое. Тут уже одиночный нейрон зрительной коры и нет  зрительной стимуляции. Здесь мы только смотрим ответы этого нейрона на стимуляцию током кишечника. Вот эта красная линия, это момент стимуляции, каждая точечка на строчках - это появление одиночного импульса. Вот это идет фоновая активность нейрона, тут мы провели электрическую стимуляцию, через некоторый, так называемый, латентный период, видите, точек стало больше, то есть нейрон среагировал на эту стимуляцию.

Здесь было девять таких стимуляций проведено, когда мы все это сложили, получили вот такую гистограмму, видно, что на эту стимуляцию во время сна этот нейрон дал такой хороший ответ. А вот теперь мы кошку разбудили, и в состоянии бодрствования дали ту же самую стимуляцию на кишечник. И вы видите, что ответы этого нейрона на стимуляцию кишечника тут же исчезают, и тот же самый нейрон переключается на зрительную функцию. Зрительные ответы на этом рисунке я не показываю.

Это то же самое, но сделано не на зрительной коре, а на соматосенсорной, но результат был такой же.

Обезьяны. Кошки от человека все-таки далеко. Можно было легко сказать: «Ну ладно, у кошки может быть и так. А уж у человека точно не так». Обезьянка все-таки более похожа на человека, и с ней можно было сделать примерно то же самое. Только здесь уже не одиночный нейрон, а другой вариант эксперимента. Можно поставить электрод, и регистрировать суммарный ответ многих нейронов. Каждый нейрон в тот момент, когда он генерирует импульс тока, генерирует еще медленные отклонения потенциала. Если их суммировать с некоей зоны мозга, то можно увидеть суммарную активность большого количества нейронов в этой части мозга. Это, так называемые, вызванные потенциалы мозга.

На рисунке представлены результаты двух экспериментов. Двум обезьянам во время сна стимулировали  кишечник. Мы видим большую волну. Она отражает активацию нейронов в этой зоне мозга. Теперь мы будим обезьяну, такой же стимул даем. Вы видите, никакой волны тут нет. Таким образом, в экспериментах на обезьянах получилось в точности то же самое, что и на кошках.

Мы начали рассказывать об этих результатах, они вызвали, конечно, злобное возмущение окружающих физиологов, потому что это не лезло ни в какие ворота, и, естественно, люди старались придумать хоть какое-то объяснение, почему это не имеет смысла и почему это все полная ерунда. Первое возражение было в том, что «вы стимулируете кишечник током, это же не специфическое явление, вы делаете что-то искусственное, и то, что вы видите, тоже совершенно искусственные ответы». Возражение очень странное, особенно тем, кто был знаком с историей физиологии, поскольку большая часть информации о нервной системе получена именно методом электростимуляции. Но это ладно, это уже на совести этих товарищей можно оставить.

Я сам всегда тоже не был большим любителем электростимуляции, мне казалось интереснее все-таки все смотреть в натуральных условиях. И стремление наше было, конечно же, начать регистрировать настоящую, натуральную активность внутренних органов зверушки, например, кишечника или желудка, и эту естественную активность сопоставлять с активностью нейронов разных отделов коры мозга. Тут нам на помощь пришел Виталий Аркадьевич Багаев, к сожалению, ныне покойный.

Он тогда руководил лабораторией кортико-висцеральных отношений в Институте Физиологии им. Иван Пигарев Павлова, большой специалист, хирург, который замечательно оперировал животных. Для меня всегда была проблема, голову-то я умею оперировать, а вот полостные операции я до этого никогда не делал, и для меня забраться в желудок или в кишечник казалось как раз чем-то довольно сложным. Он приехал в Москву и наших кошек прооперировал, и поставил им электроды в стенки кишечника и желудка, и мы получили возможность регистрировать уже натуральную миоэлектрическую активность этих органов и сопоставлять ее с активностью нейронов коры мозга.. Теперь не было никакой искусственной стимуляции.

Вот один из таких экспериментов. Эти большие всплески - так называемая, голодная активность желудка. Когда у вас в животе бурчит, это оно! Если у кошки через два часа после кормежки из желудка вся пища переходит в кишечник, желудок начинает периодически с ритмом где-то в минуту-полторы мощно сокращаться. И когда эти мощные сокращения происходят, регистрируется такая вот миоэлектрическая активность.

А вот это не совсем привычная запись. Это та же ЭЭГ коры мозга, но представленная здесь как спектрограмма. Я не буду вдаваться в методические тонкости получения этой картинки, это не так важно. Важно то, что, глянув на эту картинку, вы сразу видите, что появление этих всплесков активности в желудке совпадает с появлением вертикальных синих линий в спектрограмме. А эти синие линии отражают моменты, когда в ЭЭГ спящей кошки вдруг на короткий момент прекращаются медленные волны. Идут, идут, потом бывает короткий период, когда их нет, одну-две секунды. Потом они опять продолжаются.

Поведенчески сон при этом не прерывается. Пороги восприятия остаются такими же высокими, как и в настоящем глубоком сне. Эти явления известны всем, кто когда-либо писал ЭЭГ сна. И стало понятно, что, оказывается, эти периоды короткой, так называемой, десинхронизации ЭЭГ во время сна, просто связаны с периодами сокращения желудка во время сна.

Другой вариант опыта мы совсем быстро проскочим.  Я хочу просто показать вам, между прочим, что надо очень серьезно относиться к своим внутренностям, и что это не такая простая штука. Я вам показывал вначале, как выглядит ЭЭГ мозга. А это – электрическая активность, зафиксированная у стенки двенадцатиперстной кишки. Мне кажется, она ничуть не проще, чем картинка, которую мы регистрируем от поверхности мозга. Тут тоже видно, что она имеет очень широкий спектр, - это спектрограмма этой активности показана на нижней записи.

Почему я это показываю? Следующий наш эксперимент был такой: мы старались посмотреть, а есть ли в коре мозга нейроны, которые во время сна начнут реагировать в ритме перистальтики кишечника. У кишечника довольно частая перистальтика и можно набрать большой материал, и маленькие сигналы таким образом вытаскивать из шума. Но прелесть активности двенадцатиперстной кишки в том, что у нее не совсем одинаковый ритм, у нее есть очень простые гладенькие волны, а бывает, что у них появляются мощные электрические импульсы. Когда у них появляются мощные электрические импульсы, там происходят особо сильные сокращения стенки кишечника.

Мы регистрировали эту активность, и параллельно мы регистрировали активность нейронов разных отделов зрительной коры, и в затылке, и в лобной зрительной зоне, и в теменной зрительной зоне. И вот оказалось, что примерно треть из всех нейронов, которые мы зарегистрировали во время медленного сна, устанавливают хорошую корреляцию с вот этой ритмикой двенадцатиперстной кишки. Но оказалось даже больше того, они не просто устанавливают эту корреляцию, но среди них есть избирательные нейроны, одни из них устанавливают связь вот с этими колебаниями, с, так называемыми, спайк-потенциалами, а другие – с теми волнами, которые их не имеют. Видно уже, что нейроны там умеют проводить какой-то, непонятный нам, хитроумный анализ.

Еще один вариант такого же эксперимента. Так выглядит кусок нормального дневного сна кошки. Периоды высокоамплитудных волн – это медленно-волновой сон. А это периоды пробуждения или быстрой фазы сна. А вот здесь, в другой день, мы кошке через фистулу в желудок ввели лекарство «Лоперамид», это известное кишечное средство, во многих лекарствах оно есть, оно сильно меняет всасывание через разные каналы. Видно, как введение «Лоперамида» существенно изменило картину ЭЭГ кошки во время сна. Это нормальный сон, а это сон после введения «Лоперамида». Полностью рассыпалась вся картина электрической активности мозга, уже стало непонятно, что это – быстрый сон или медленный сон.

Но конечно не только желудочно-кишечный тракт представлен в коре мозга во время сна. На следующем слайде показан ритм дыхания, локальная ЭЭГ первичной зрительной коры, и нейроны в первичной зрительной коре во время сна. Вы видите, как замечательно эти нейроны следуют за ритмом дыхания, это бывает не часто, таких нейронов мы видели немного. Недавно коллега из одного американского университета мне написал, что в соматосенсорной коре обезьяны, которая у него была, под наркозом вдруг обнаружилось, что нейрон начал разряжаться в ритме дыхания.

Оказалось, что не только дыхание, но и активность сердца отражается в корковой ЭЭГ во время сна. Вызванные ответы на сердечные сокращения тоже появляются как раз в периоды высокоамплитудного медленного сна.

Наверное, нужно что-то сказать и про быстрый сон потому что, наверное, многие из вас в каких-то журнальных статьях слышали байку, что именно быстрый сон - это то состояние мозга, когда мы видим сновидения. Ну вот, во-первых, хочу вам сказать, что от этого утверждения уже практически все ученые отказались. Было сделано большое количество экспериментов, которые показали, что сновидения могут быть и в фазу медленного сна, и в фазу быстрого сна. Я вам сейчас дальше предложу механизм появления сновидений, будет понятно, скорее всего, что тут фаза сна роли не играет.

А что же тогда этот быстрый сон? Ответом на этот вопрос мы пока серьезно не занимались. Быстрый сон отличается от медленного сна только тем, что там нет этих больших медленных волн. А если мы посмотрим на наши внутренние органы, то увидим, что есть внутренние органы, которые имеют явно выраженную ритмическую активность, вроде желудочно-кишечного тракта (ЖКТ), дыхания, сердца. А есть органы, которые не имеют ритмической активности, – печень, почки, репродуктивная система, сосудистая система, лимфатическая система. Там нет столь очевидной ритмики.

Так вот, скорее всего, просто-напросто, мозг проводит во время одного цикла сна некоторое поочередное сканирование всех частей нашего тела. Когда он сканирует те части тела, которые имеют ритмическую активность, мы видим волны ЭЭГ.

Когда мы приходим к органам, которые не имеют ритмической активности, она становится такая неритмическая, мы ее называем «быстрым сном».

Мы уже подходим к концу лекции. Теперь я хочу показать простую схему, показывающую, как нам сейчас представляется, организацию информационных потоков в мозге при переходе от бодрствования ко сну.

Левая половина – это то, что происходит в состоянии бодрствования. Во время бодрствования сигналы из окружающей среды через, так называемые, экстеро-рецепторы (это все сенсоры, получающие сигналы из внешнего мира) попадают в кору мозга. По дороге они проходят через некоторое устройство, которое можно назвать «вентильное устройство» или «блокирующее устройство».

Смысл его состоит в том, что входы от рецепторов никогда не идут прямо в кору, это медицинский факт. Они проходят через специальную промежуточную структуру, которая называется «таламус». И там происходит переключение сигналов с одного нейрона на другой нейрон, и вот там, где происходит это переключение, можно сигнал передать, а можно сигнал не передать.

И вот для этого существует вот такое устройство, которое может по некоторому внешнему сигналу открыть проведение или закрыть проведение. Это таламический уровень. Во время бодрствования эти сигналы пропускаются в кору мозга для анализа, тут они анализируются и выдаются результат. Куда? Выдается в два блока, один блок связан с нашим сознанием, ощущением и нашим восприятием, и ощущением себя во внешнем мире. Второй блок связан с обеспечением поведения и двигательной активности.

Тут возможно возникновение недоумения. Все со школы знают, что с сознанием, с памятью, со всеми сложными высшими когнитивными функциями связана кора. Я тут хочу сказать, что именно работа со сном ставят под сомнение это общепризнанное заключение.

Мы прекрасно знаем, что во время сна сознание выключено. Нейроны в коре мозга во время сна так же активны, как во время бодрости. Если бы сознание было связано с активностью нейронов коры, то, видимо, оно должно было быть активно и во время сна. Никакой разницы в активности нейронов в коре мозга во сне и в бодрости нет, как я вам пытался показать до этого. Значит, надо предположить и заключить, что или сознание не связано с нейронной активностью, или нейроны, связанные с сознанием, локализованы не в коре.

С этой логикой были поставлены специальные эксперименты. Одна американская команда занималась визуализацией интенсивности нейронной активности в мозге с помощью магнитно-резонансной томографии (МРТ) или позитронной томографии Они смотрели, какие отделы мозга в каких ситуациях работают. И у них была та же самая логика «Будем искать отделы сознания. Мы знаем, что сознание во время сна не работает, вот посмотрим, где же те зоны мозга, которые не работают во время сна, а работают только в бодрости». Они сделали эти эксперименты, сразу же увидели, что кора не подходит, кора работает одинаково хорошо. А нашлись специальные структуры, которые называются «базальные ганглии», нейроны в которых именно так себя и ведут. Они активны в бодрости и молчат во сне.

Параллельные независимо от них мы ставили такие же электрофизиологические эксперименты, и тоже показали, что действительно, нейроны базальных ганглиев, которые получают все входы от коры, во время бодрствования активны. Но эта активность прекращается во время сна. Очень хорошо все сходится к тому, что если сознание у нас в мозге где-то локализованное, то это уже не кора, а вот эти структуры базальных ганглиев. Почему не соединить блоки сознания и поведение в один? Есть эксперименты, свидетельствующие, что это разные отделы мозга, которые могут работать независимо один от другого. Если у вас хватит терпения, я вам могу и об этом рассказать.

Сейчас мы перейдем к другому. Есть еще наш внутренний мир. Я имею ввиду внутренние органы, которые через интерорецепторы передают сигналы в нервную систему, которая называется автономная нервная система. Действительно, это признанный медицинский термин, потому что все считали, что да, она автономная, не имеет связи с головой, с корой мозга, и занимается внутренними маркерами. Она маленькая, нейронов там не так много. Совершенно понятно, что такой гигантский поток информации, который идет от внутренних органов, это бедная автономная нервная система перелопатить не в состоянии. Но она в состоянии поддерживать работоспособность внутренних органов в течение небольшого времени.

Другой минус этой автономной нервной системы состоит в том, что она знает только то, что делается в том органе, за который ее кусочек ответственен. Вот есть у нее ганглий, который сидит в желудке. Он знает все про это место желудка, но совершенно не знает то, что происходит в почках, в печени или в других частях. А вот такого места, которое бы собрало сведения о всех наших внутренних органах и начало их координировать, в автономной нервной системе нет, и она, бедная, поэтому такие сложные задачи решать не может.

Продолжение ==>


Процитировано 2 раз

 

Добавить комментарий:
Текст комментария: смайлики

Проверка орфографии: (найти ошибки)

Прикрепить картинку:

 Переводить URL в ссылку
 Подписаться на комментарии
 Подписать картинку